Tag Archives: Azure AD

Exploring Azure MFA sign-in failures using Log Analytics

Most IT admins, pros and end users from organizations that use Office 365 and Azure AD will by now have heard about the big Azure MFA outage on Monday November 19. When something like this happens, it is important to get insights on which users that were affected, and in what type of scenarios they most experienced the problem. Microsoft MVP Tony Redmond wrote a useful blog post (https://office365itpros.com/2018/11/21/reporting-mfa-enabled-accounts/) on how to report on possible/potentially affected and MFA enabled users, and how to disable and re-enable those users. But many organizations are now using Conditional Access policies using Azure AD Premium, so this will be of limited help for those.

If I could wish one thing from Microsoft for Christmas this year, it would be to be able to manage MFA and Conditional Access policies with Azure AD PowerShell and Microsoft Graph! Admins could then run “break-the-glass” administrative users (or even “break-the-glass service principals”) to disable/re-enable policies when big MFA outages happens. A good CA policy design, trusting compliant devices and secure locations could also go a long way in mitigating such big outage problems.

Tony’s blog post made me think about the feature I recently activated, on integrating Azure AD Activity Logs to Azure Log Analytics, you can read more about this here: https://gotoguy.blog/2018/11/06/get-started-with-integration-of-azure-ad-activity-logs-to-azure-log-analytics/

By exploring the Sign-in logs in Log Analytics I could get some more insights into how my organization was affected by the MFA outage on November 19. Please see the above blog post on how to get started setting up this integration, the rest of this blog post will show some sample queries for the SigninLogs.

Querying the SigninLogs for failed and interrupted sign-ins

All the queries seen below are shown in screenshot images, but I have listed all them for you to copy at the end of the blog post.

First I can take a look at the SigninLogs for the specific day of 19th November, and the grouping on the result type and description of the sign-in events. For example I can see that there is a high number of event 50074: User did not pass the MFA challenge. Interestingly there is also a relatively high number of invalid username or password, that could be a separate issue but could also be that users that fails MFA sign-ins tries to log in again thinking they had wrong password first time.

image

Changing that query a little, I can exclude the successful sign-ins (ResultType 0), and sort on the most count of failures. Two of the events of most interest here is 50074 and 50076:

image

In this next query I focus on the “50074: User did not pass the MFA challenge” error. By increasing the time range to last 31 days, and adding a bin(TimeGenerated, 1d) to the summarize group, I’ll be able to see the count of this error on each day in the last month. This will give me a baseline, and we can see that on the 19th this number spikes. I have added a render to timechart for graphical display. There are also some other days where this number increases, I can look into more insights for that if I want as well, but for now I will focus on the 19th.

image

Back to the time range of the 19th of November, I can modify the summarize to group by each hour, by using bin(TimeGenerated, 1h). This will show me how the problems evolved during the day. Must errors occurred about 10 am in the morning:

image

Lets look at some queries for how this error affected my environment. First I can group on the Users and how many errors they experience. Some users were really persistent in trying to get through the MFA error. I have masked the real names. We also see some admin accounts but admins quickly recognized that something was wrong, and actively sought information on the outage. By midday most users were notified on the on-going outage and the number of errors slowly decrease during the day.

image

In this next query, I group on the Apps the users tried to reach:

image

And in this following query, what kind of Client App they used. It would be normal that Browser is quite high, as mobile apps and desktop clients are more likely to have valid refresh tokens.

image

In this query I can look into the device operating system the users tried to sign in from:

2018-11-21_22-05-27

In the following query I can look at which network the users tried to log in from, by identifying IP address:

image

And in this query we can get more location details from where users tried to sign in:

2018-11-21_22-07-17

Summary

Querying Log Analytics for Sign-in events as shown above can provide valuable insights into how such an outage can affect users. This can also give me some input on how to design Conditional Access policies. Querying this data over time can also provide a baseline for normal operations in your environment, and make it easier to set alert thresholds if you want to get alerts when number of failures inside a time interval gets higher than usual. Using Azure Monitor and action groups you can be pro-active and be notified if something similar should occur again.

Here are all the queries shown above:

// Look at SigninLogs for a custom date time interval and group by sign in results
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| summarize count() by ResultType, ResultDescription

// Exclude successful signins and format results with sorting
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType != "0" 
| summarize FailedSigninCount = count() by ResultDescription, ResultType 
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error last month to see trend
// and present to line chart group by each 1 day
SigninLogs
| where TimeGenerated >= ago(31d)
| where ResultType == "50074"
| summarize FailedSigninCount = count() by ResultDescription, bin(TimeGenerated, 1d)
| render timechart

// Look at User did not pass the MFA challenge error on the MFA outage day
// and present to line chart group by each 1 hour to see impact during day
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074" 
| summarize FailedSigninCount = count() by ResultDescription, bin(TimeGenerated, 1h)
| render timechart

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on users to see affected users
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by UserDisplayName
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on Apps to see affected applications the users tried to sign in to
SigninLogs
| where TimeGenerated  between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by AppDisplayName
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on client apps to see affected apps the users tried to sign in from
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by ClientAppUsed
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on device operating system to see affected platforms
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by tostring(DeviceDetail.operatingSystem)
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on IP address to see from which network users tried to sign in from
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by IPAddress
| sort by FailedSigninCount desc

// Look at User did not pass the MFA challenge error on the MFA outage day
// and group on users location details to see which country, state and city users tried to sign in from
SigninLogs
| where TimeGenerated between(datetime("2018-11-19 00:00:00") .. datetime("2018-11-19 23:59:59")) 
| where ResultType == "50074"
| summarize FailedSigninCount = count() by tostring(LocationDetails.countryOrRegion), tostring(LocationDetails.state), tostring(LocationDetails.city)
| sort by FailedSigninCount desc

Alert on On-premises Connectivity for Self Service Password Reset using Azure Monitor and Azure AD Activity Logs in Log Analytics

Recently I wrote a blog post on how to get started with integration of Azure AD Activity Logs to Azure Log Analytics. Setting up this is a requirement for the solution in this blog post, so make sure you have set this up first: https://gotoguy.blog/2018/11/06/get-started-with-integration-of-azure-ad-activity-logs-to-azure-log-analytics/.

In this blog post I wanted to show a practical example on how to create an alert for when Azure AD Self Service Password fails in password writeback because of connectivity error to the On-premises environment.

Build the query

If you know the schema, you can write the query directly, but more often than not you will work out these scenarios by exploring your actual log data. In my example we had a concrete example where password resets failed because of On-premises connectivity error. Looking into the Azure Log Analytics logs, I started with this simple query against AuditLogs:

image

After that I looked into the filters, and found that I could filter on Failures:

image

This resultated in some failure results. Exploring the results in the bottom right windows, I found that the failures had a ResultDescription of “OnPremisesConnectivityError”:

image

By clicking on the plus sign above I add that to the query:

image

I want to save my query next, so that I have it available for later:

image

Now that I have the results I want I can proceed to create an Alert Rule. Btw, here is the full query (I have since amended it to include OnPremisesConnectivityFailure in addition):

AuditLogs
| where Category == "Self-service Password Management"
| where ResultType == "Failure"
| where ResultDescription == "OnPremisesConnectivityError" or ResultDescription == "OnPremisesConnectivtyFailure"

Create an Alert Rule

Next, I can create a new Alert Rule for this query, something you can do directly from the query:

image

This next step would bring me over to the Azure Monitor and Rules Management section. The alert target (OMS/Log Analytics Workspace) and target hierarchy (Azure Subscription and Resource Group) should already be specifed:

image

Now I need to configure the alert criteria. Note that currently monthly cost for this alert is $1.50. Click on the criteria to configure the signal logic:

image

Here we see the query from before, as well as we need to set a threshold for number of results, and a period and frequency. Pricing details can be found at: https://azure.microsoft.com/en-us/pricing/details/monitor/. If you look at Alert signals and Log section, you’ll see that alerts with frequency of 5 minutes is $1.5, 10 minutes $1 and 15 minutes $0.5. This is per log monitored. I changed my period and frequency to 15 minutes:

image

After I click done I see that the alert criteria is correctly configured with a price of $0.50:

image

Next I need to specify the alert details, for example like below. You also have the option to supress multiple alerts inside a time window. I configured 60 minutes:

image

Next I need to either select an existing action group or create a new. An action group decides which action to take when an alert occures:

image

I’ll create a new action group for now. In this action group I will select to send an e-mail to a group in my company. As you see in the image below I have several options for action type, examples of use can be:

  • Trigger e-mail, SMS, push or other notifications.
  • Trigger Azure Functions for running some code logic.
  • Trigger Logic App for executing a business flow logic.
  • Trigger a webhook for posting a status, for example to a Microsoft Teams webhook.
  • Send the Alert via ITSM connector to create an incident in your connected ITSM system.
  • Trigger a Runbook in Azure Automation to run your own PowerShell runbooks, or you can use one of the built-in runbooks for restart, stop, remove or scale up/down VM.

image

When selecting Email I need to specify an e-mail address for the user/group I want to notify:

image

After that I’m ready to create the Alert rule:

SNAGHTML50ef585

After I created the rule, the group e-mail address I specified received this e-mail, confirming that it is now part of an action group:

image

If you want to locate and change this alert rule at a later stage, you will find it under Azure Monitor and Alert Rules:

image

Thats it, now we can just wait for future Self-Service Password Reset or Change connectivity errors, and we will get notified.

Testing the Alert rule Notification

For testing, I just wanted to force the error by logging into my Azure AD Connect Server and stop the service.

After that I tried to reset or change my password, resulting in this error message shown to the user:

image

Now in this situation, most users will either just wait and try again later, try one more time and then give up, and if you are lucky they will contact their IT admin and notify of the error. More often than not users just leave it there, and not notify anyone. This is where it is useful to get an alert as we have created here, because then you as an IT admin can proactively analyze and fix the error before it affects more users. This is the alert I received to my specified group:

image

We can directly click on the result to get into details for the error, for example which user was affected, from which IP address and more:

image

I don’t know about you, but I think this is just brilliant 🙂 With the integration of Azure AD Activity Logs in Log Analytics, I can really explore and analyze a lot of the operations going on in my tenant, and using Azure Monitor I can create alert rules that notifies or trigger other actions to handle those alerts.

Thanks for reading, more blog post will follow on this subject of Azure AD and Log Analytics, so stay tuned!

Get started with integration of Azure AD Activity Logs to Azure Log Analytics

Recently Microsoft announced the availability of forwarding the Azure AD Activity Logs to Azure Log Analyctis. You can read the announcement in full here: https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Azure-Active-Directory-Activity-logs-in-Azure-Log-Analytics-now/ba-p/274843.

By bringing thousands (or even millions depending on your organization size and use of Azure AD), of sign-in and audit log events to Log Analytics you can finally use the power of Log Analytics for query, analyze, visualize and alert on your data.

In this blog post I will show how to get started and provide some useful tips. Most of this is already well documented in the following Microsoft Docs, but I will provide my own perspective and experience and as well let this blog post be an anchor for future detailed blog posts on the subject of analyzing Azure AD sign-in and audit logs in Log Analytics and Azure Monitor:

Set up Diagnostic Settings to Log Analytics

The first action we need to do is to Turn on diagnostics in the Azure AD Portal. You will need to be a Global Administrator or Security Administrator to do this:

image

PS! Another way to get to this setting to Turn on diagnostics is to either go to Sign-ins or Audit logs under Monotoring, and from there click on Export Data Settings:

SNAGHTML591fe33

Next select to Send to Log Analytics, and then select either or both of the AuditLogs or SigninLogs.

image

Note that to be able to export Sign-in data, your organization needs Azure AD Premium P1 or P2 (or EMS E3/E5). This requirement only applies to sign-in logs, not audit logs.

After selecting Log Analytics, and which logs to export, you need to configure which Log Analytics (still named as OMS) workspace to export the data to:

image

Note that this requires access to an Azure Subscription. You can either select an existing OMS workspace or create a new:

image

Important info! Usually you will need to be a Global Administrator or Security Administrator to be able to access the details of Sign-in logs or Audit logs in Azure AD, but by exporting this data to either an existing or a new Log Analytics workspace, potentially a lot more users can access that data. You need to think about if this is something you want to do, and at least control and govern which users can access that Log Analytics workspace.

For this reason alone it would probably be a better idea to create a dedicated Log Analytics workspace for the Azure AD activity logs:

image

Regarding pricing, using a Log Analytics workspace for Azure AD Activity Logs alone should not incur a notable cost in most normal environments. In an environment of less than 100 users I found the following consumption per day, which is way below the amount of free data you get included:

image

If you want to save and use that same query yourself, here it is:

Usage| where TimeGenerated > startofday(ago(31d))| where IsBillable == true
| where (DataType == "SigninLogs" or DataType == "AuditLogs") and Solution == "LogManagement"
| summarize TotalVolumeGB = sum(Quantity) / 1024 by bin(TimeGenerated, 1d), Solution| render barchart

Choosing a pricing tier depends on whether the Subscription was created before April 2, 2018 or not, or whether you have elected to move to a new pricing model. The older pricing model had a choice of free tier, which had a daily cap of 500 MB and a data retention of 7 days. As the diagram above showed, most organizations will be way below the 500 MB daily cap, but a retention of only 7 days will be considered short for most analyzing needs. So under the older pricing model you would consider a standalone per GB model, giving a retention of 1 month by default, but a cost of $2.30 per GB.

The new pricing model after April 2, 2018 has a simplified pricing model. Here the first 5 GB are free and you have a default retention of 31 days. Additional GBs for ingestion are $2.99 per month, and extra retention after the first 31 days is $0.13 per GB per month. Note that this pricing model is on subscription level and affects all your Log Analytics workspaces, so you need to carefully consider any changes to the new pricing model in your subscription.

After you have selected/created a Log Analytics workspace, and provided a name for the Diagnostic settings, you are ready to Save:

image

After about 15 minutes you can start explore the Logs in the Log Analytics workspace.

Start to Analyze Azure AD Activity logs with Log Analytics

To begin analyze the exported Azure AD Activity Logs with Log Analytics, you can either go to the Log Analytics section in your Azure Portal. You can also access the logs directly from Azure Active Directory from under the Monitoring section, which will take you directly to the configured Log Analytics workspace:

image

By default this will open a search query showing sample data from all your Log Analytics workspace.

I find that a good way to start learning about the sign-in and audit logs is to look at the schema. The SigninLogs and AuditLogs schemas should appear right under LogManagement as shown below:

SNAGHTML5fc1b7b

To look at the SigninLogs just add that to the query window and select a time range and click Run:

image

Depending on your sample data you can start filter on the left side, for example to look at only certain app sign ins, or client apps used, location and more..

Similarly for AuditLogs, in the following example I have set a time range of last 7 days:

image

See the links in the beginning of this blog post for some more sample queries and you can also import some sample views.

So now that we have a working diagnostic setting that exports my Azure AD sign-in and audit logs to Azure Log Analytics, I’m ready to explore some interesting scenarios for analyzing this data. This will be a topic for upcoming blog posts, so stay tuned for that!

Thanks for reading so far, I’m really excited for this feature! Smile

Create your own Azure AD PIM App with PowerApps and Flow using Microsoft Graph

A while back I wrote a blog post on how you could access Microsoft Graph API using a custom connector in PowerApps and Flows: https://gotoguy.blog/2017/12/17/access-microsoft-graph-api-using-custom-connector-in-powerapps-and-flows/.

In this blog article I will build on that blog post to provide a practical example of using Microsoft Graph, and create an Azure AD PIM (Privileged Identity Management) App for activating any eligible admin roles for the logged on user.

First lets look into some of the documentation and what we need to prepare.

Microsoft Graph API for Azure AD PIM

Azure AD Privileged Identity Management provides you a way to enable on-demand time limited access for administrative roles. Microsoft Graph API for Azure AD PIM is currently available under the Beta endpoint, and documented here: https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/resources/privilegedidentitymanagement_root.

If a user that has been assigned admin roles using Azure AD PIM, wants to activate any of the eligible role assignments, the user can navigate to the Azure AD PIM blade or just use this short url: https://aka.ms/myroles. In this blog post I will use my demo user account as an example, and this user has these roles assigned currently:

image

If I want to access my roles using Graph API I can use the privilegedRoleAssignment: my method (https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/api/privilegedroleassignment_my).

Let’s try to do that using the Graph Explorer! (https://aka.ms/GE). Make sure you are signed in using your work account (normal user account), as I have in the screenshot below, and the run the GET command as shown below (https://graph.microsoft.com/beta/privilegedRoleAssignments/my):

SNAGHTML1778e65

In my case this returns the following (I have blurred out my userid for privacy):

image

Note that the response also shows if I have a current activation of any roles, and if so when that will expire. Roles that have isElevated set to “true”, and without an expirationDateTime are roles that are permanently assigned. If I want to query on that I can run the following GET command:

image

When my role assignments are returned I only get roleId’s though, so lets look at how I can get the displaynames of those roles.

For example, I see from the response above that one of the roleId’s returned is 29232cdf-9323-42fd-ade2-1d097af3e4de. In the Graph API for Azure AD PIM there is a method to list privilegedRoles (https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/api/privilegedrole_list), so if I run the following in Graph Explorer: https://graph.microsoft.com/beta/privilegedroles/29232cdf-9323-42fd-ade2-1d097af3e4de, I should get more role information right?

No, I don’t have permission to do that:

image

Lets look at the documentation, and it clearly states that for the requestor (my normal user account) to be able to list privilegedRoles I need to be either a Global Administrator, PIM Administrator, Security Administrator or Security Reader:

image

So that won’t work for me, as I want to let normal user accounts to be able to use my Graph API commands.

However, one thing that normal users do have access to, is listing of directoryRoles (https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/api/directoryrole_list). So if I run that, I will get all directory roles with their id and a roleTemplateId, and I have highlighted below the id I was looking for above, which turns out to be the Exchange Administrator role:

image

So, to get the displayName of the role I can run the following GET request: https://graph.microsoft.com/beta/directoryroles/?$filter=roleTemplateId eq ‘29232cdf-9323-42fd-ade2-1d097af3e4de’:

image

Ok, so now I have a way to query for my role assignments, and also a way to query for the display names of any roles. Now I need to see how I can activate (or deactivate) my role assignments.

I will use these methods: privilegedRole: selfActivate and privilegedRole: selfDeactivate, they are documented at https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/api/privilegedrole_selfactivate / https://developer.microsoft.com/en-us/graph/docs/api-reference/beta/api/privilegedrole_selfdeactivate.

When I do a POST /privilegedRoles/{id}/selfActivate, I need to specify the role id in the request uri and and a request body:

{
  "reason": "reason-value",
  "duration": "duration-value",
  "ticketNumber": "ticketNumber-value",
  "ticketSystem": "ticketSystem-value"
}

For example I can try to activate the Exchange Administrator role by POST to: https://graph.microsoft.com/beta/privilegedRoles/5cfc2572-33b1-4839-8774-2bae31da1a29/selfActivate, and specify a request body like shown below. Note that all properties in the request body are optional, I can just leave them blank or provide default values:

image

Currently there is an error in the Graph Beta API for PIM that won’t let me activate roles that require MFA, so I’ll just accept this error and move on for now:

image

Before I deactivate a role I need to have it to be active, so for now I will go to https://aka.ms/myroles, and activate the Exchange Administrator role manually, promptly requiring MFA verification first:

image

And after that I can activate the role:

image

To deactivate the Exchange Administrator role via Graph API I’ll just do a POST to /privilegedRoles/{id}/selfDeactivate, specifying the role id like this: https://graph.microsoft.com/beta/privilegedRoles/29232cdf-9323-42fd-ade2-1d097af3e4de/selfDeactivate

No request body is needed, and this time I get a successful response:

image

I think these 4 methods will do for now, there are a lot of other methods for managing PIM roles and settings as well, but we are now ready to start working with our PowerApps and Flow Custom Connector.

Add Microsoft Graph Permissions to App Registration

As I mentioned in the beginning of this blog post, I previously wrote a blog post on how to set up an App Registration for a custom connector for PowerApps and Flows. I will now build on this, so if you want to follow the steps I do here, please set up the prerequisites as described in the blog post: https://gotoguy.blog/2017/12/17/access-microsoft-graph-api-using-custom-connector-in-powerapps-and-flows/.

Looking at the documentation I see that I need to add Delegated Permissions for Directory.AccessAsUser.All to be able to list my assignments:

image

Similarly, if I check the documentation for the other methods from above,  I will need also Directory.AccessAsUser.All:

image

image

image

So I will go ahead and add that permission to my App Registration from before. Logged in as a Global Admin find the App Registration, go to Settings and Permissions, and add the following delegated permission for Microsoft Graph:

image

Note that it requires an admin to consent, so remember to click on Grant permissions:

image

Now we are ready to add the PIM API methods to the Custom Connector.

Adding PIM API’s to Custom Connector Operations

Again building on my linked blog post, you should now be able to log on to PowerApps, and find your PowerApps Microsoft Graph connector:

image

If you don’t have it, just follow the steps in the linked post to create it.

Select to edit, and go to step 3. Definition and add a new action. Lets first create a new action for getting my role assignments:

image

Scroll down to Request, this is where we will provide the details for our query. The best way to do this is to select to Import from sample. I specify the Method to be GET, and then the query like this, which is the same query I ran in the Graph Explorer earlier:

image

I don’t need to specify any Header or Body for this query, so I just press Import. Now my action looks like this:

image

Scroll down to the Response section, and then click on the default response. Click on Import from sample, and this time you paste in the response body from the previous Graph Explorer query:

image

This response will help the custom connector operation so that we can get the right output values mapped in our PowerApp later. Select Import.

The response now looks like this:

image

We can also validate that the response looks ok:

image

Click on Update connector to save this operation, do not select to Test at this point. We have more to do..

Next I want to create another action for List directoryRoles. I’ll create a new Action:

image

Request and Import from sample:

image

Note that the Request now will have a $filter parameter:

image

Default Response and Import from sample:

image

Check validation and the Update Connector:

image

Next I want to create another action for

privilegedRole: selfActivate. I’ll create a new Action:

image

Request and Import from sample, this time note the POST verb, and specifying {id} in URL, as well as the request body as shown below:

image

Note now that the request will have an id parameter in the path as well as a body parameter:

image

Default Response and Import from sample (response body is copied from documentation):

image

The response looks like this now and we can check validation:

image

Click Update Connector to save our progress so far. Now we can add the last action for privilegedRole: selfDeactivate :

image

Request and Import from sample, specifying verb POST and again using {id} in URL:

image

The request will look like this now:

image

Default Response and Import from sample:

image

And we can validate the response:

image

Click on Update Connector to save. We should now have 4 actions successfully configured, in addition to the ones we had from before:

image

Now we can do some testing, close the connector for now. Under Data, find Connections. If you previously had any connections to the “PowerApps Microsoft Graph” connector, like I have here, delete the connection:

image

After clearing any existing connections, select New connection at the top and find the PowerApps Microsoft Graph connector:

image

Click create and the log in with your current user to create the connection. Now you can go back to the custom connector, click Edit and then go to Test section. Select the current connection, and select the action to test. Then click Test operation:

image

The test should complete successfully and return my role assignments:

image

Lets test the list directory roles, this time I need to specify the $filter:

image

Testing selfActivate will fail as it did with testing with Graph Explorer because of the MFA requirement: (we will explore that later)

image

image

Last test is for selfDeactivate, which willl have an empty response because the role is not active:

image

Starting with the PowerApp

Now that we have the Custom Connector Operations ready, we can proceed to create the PowerApp. We’ll begin with an empty app, create some controls and layouts before we get into the Flows needed.

Start by Create an app:

image

Then select a blank canvas, and phone layout:

image

You should now have an empty app like this:

image

Fast forward, and I’ll assume you have some basic PowerApps skills, add some controls, layout and image after your liking, ending up with something similar like this:

image

A quick summary of the above:

  • In addition to my selected logo and background, I’ve added labels for listing my roles and selected role details.
  • I’ve added three buttons, one for refreshing my roles, and one for activate and deactivate any roles.
  • I also have a text box to provide an activation reason, as well as a message label to show/hide any error message if I try to activate without a reason. We’ll get to that later.

Now we have an empty powerapp with some layouts and controls. It’s time to get into the Flows that will trigger the Microsoft Graph operations. First go to App Settings and specify an App name and choose a descriptive icon and color:

image

And then save the App:

image

Creating the Flow for Getting My Role Assignments

In the PowerApps main menu, find the link to Flows, and the select to create a Flow from blank:

image

After creating a blank Flow from here there will already be a step for input from PowerApps as shown below:

image

Click New step, add an action, and search for variables, and select the Variables – Initialize variable action:

image

Type the name MyRolesArray and select Type Array:

image

Add a new step of type action, and this time we will search for the custom connector “powerapps microsoft graph”, and that will list any operations we defined earlier. We will now select the operation for “My Privileged Role Assignments”:

image

Our Flow should look like this now:

image

When we tested via Graph Explorer earlier in this blog post, PIM role assignments returned with only role id’s, so we had to do an additional call to list directoryroles to get the displaynames of the roles. We will now implement some logic in the Flow to achieve this.

Add a new step, this time selecting More and Add an apply to each:

image

In the Apply to each, select “value” as output from the previous step as shown below:

image

It’s also a good idea to rename the step, like I have done below before you proceed:

image

Inside the For Each loop, add a new action, searching for the PowerApps Microsoft Graph connector again, this time selecting the List directoryRoles operation:

image

We need to provide a value for the $filter parameter, this is done by typing the filter definition and selecting the roleId from the dynamic content provided by previous step:

image

I also rename the step before I proceed:

image

Next, add another Apply to each section, using the value output from the List directoryRoles to get DisplayName:

image

Next add an action and search for append to array, and select that:

image

Now comes the most important part. I want to use the array variable I initialized in the beginning of the Flow, and build a custom JSON object array which integrates my role assignments as well as the displaynames in one single output. So in the following I select the array variable name, and for value I create my own custom JSON as shown below. In addition I use the dynamic content to search for the values I want to add:

image

At the end of the Flow, outside of the two nested Apply to each loops, add a Request – Response action:

image

In the Response, specify the MyRolesArray as Body, and provide a Response Body JSON Schema. The best way to get a JSON schema is to Save and Test the Flow, and look at the default Response. This is how it looks in my definition:

image

This is the JSON schema I used:

{
"type": "array",
"items": {
"type": "object",
"properties": {
"roleId": {
"type": "string"
},
"displayName": {
"type": "string"
},
"isElevated": {
"type": "boolean"
},
"expirationDateTime": {
"type": "string"
}
},
"required": [
"roleId",
"displayName",
"isElevated",
"expirationDateTime"
]
}
}

Next, Save and Test the Flow. Look for the Test button, and select like below:

image

Follow the on-screen instructions for choosing test connection, and then start the Flow. Click the link to see the Flow run activity, and you should be able to see that the Flow executed successfully and you can look at the details on each step. I’m mostly interested in the Response output at the end, and it looks like this:

image

If I scroll down I can see that the output contains all my roles, and have the display name included in the output. This is the output I eventually will work with in my PowerApp.

Remember to give the Flow a describing name, and Save it before you proceed to the next section.

image

Creating the Flows for Self Activate and Deactivate Roles

Now we need to create the Flows for self activating and deactivating the selected roles. First start by creating a new blank Flow, starting with the input from PowerApps:

image

Add a new step and action for the Microsoft PowerApps Graph connector and the Privileged Role Self Activate operation:

image

When choosing this operation we will get the opportunity to specify input fields, where id is required, as this is the role id for the role we want to activate. In addition we can specify a reason, as well as duration and ticketing info as optional fields:

image

In my solution I want to specify id and reason, and just use the default duration. For the id field and reason field, just click “Ask in PowerApps”, which will create two parameters to use from PowerApps when I will call the flow:

image

In the third step I will add a Request – Response action, and use the Body from the previous step, like this:

image

Save the Flow with a name like I have done below:

image

Then its a good idea to test the Flow, select the test button, provide the trigger for the flow, and when running we need to manually specify the role id to activate, and a reason, like shown below:

(PS! Remember to test with a role that does not require MFA on elevation, because of the previously reported bug.)

image

After clickin Run Now, verify that the Flow successfully started, and then click into the activity details. In the example below I can verify that indeed the role was activated:

image

So that is the Flow for self activating a role, now we need a similar Flow for deactivating a role. Now that we should start getting the hang of this, this is how that Flow should look after creating and saving it:

image

Deactivating a role only requires the role id as a parameter, as shown above. Lets test this as well:

image

The Flow should start successfully, and you can verify the steps like in the following:

image

So, now we have created 3 Flows that we will use in the previously created PowerApp. In the next section we will add the flows and provide some logic to the application.

Connecting the PowerApp to the Flows

Back in the PowerApp created earlier, open it in Edit mode, and select the Refresh My Roles button. Click on the Action menu, and then on Flows, and from the Data section select the Flow we created earlier for Get My Role Assignments:

image

When selecting that Flow, the OnSelect event will populate with the name of the Flow and the Run method. As this Flow doesn’t have any input arguments we can just close the parenthis after like this .Run(), as shown below:

image

So now our button will get any role assignments for the connected user, but we have store the output we get back from the Flow, and use that in the listbox and in the details labels below. So while the Refresh My Roles is still selected, add the following to the OnSelect event:

Set(wait,true);
ClearCollect(MyPIMRoles,GetMyRoleAssignments.Run());
Set(wait,!true)

Like this:

image

A little explanation, the Set(wait,true) and Set(wait,!true) are used at the beginning and end of the action for indicating that the PowerApp is busy when calling the Flow. The ClearCollect is used to store the output response we get back from the Flow in a variable; MyPIMRoles.

Next, set the Items property of the listbox for My Roles to MyPIMRoles:

image

If we now du a test run of the PowerApp, the easiest way to do that is to hold the ALT button down and then click on the Refresh My Roles button. This should return the roles you are assigned to like this:

image

If your listbox is not showing the displayname of the roles, you can change that from the advanced properties of the listbox:

image

While the listbox i still selected, change to the OnSelect method and add the following:

Set(SelectedRole,First(lstMyRoles.SelectedItems))

It should look like this:

image

A quick explanation of this: I’m setting a variable “SelectedRole”, every time I click on a role in the listbox, by getting the first instance of the lstMyRoles.SelectedItems. (In fact, as my listbox only allows to select one item at a time, the first will always be the one I selected).

This “SelectedRole” variable can now be used in my other label details. First, set the lblRoleIdValue.Text property to the following:

image

Likewise, set the lblRoleElevatedValue.Text property to the following:

image

And then set the lblRoleExpiresValue.Text property to: Text(DateTimeValue(SelectedRole.expirationDateTime), DateTimeFormat.ShortDateTime24), like this:

image

As you can see, I’ve added some format functions to display any date and time values from the selected role in the format of short datetime 24 hour clock.

Now, if you hold down the ALT button again, you can click on the selected roles in the listbox, and the labels below will update with the selected role id, if it is elevated or not, and any expiry of existing elevations:

AzureADPIMApp1

Now it’s time to add the other Flows to the Activate and Deactivate buttons, first select the Activate button, and on the Action and Flow menu, select to add the Priviliged Role Self Activate Flow:

image

This Flow needs two inputs:

image

The first input we will get from SelectedRole.roleId, and the second from the txtActivationReason.Text, so it would look like this:

image

Similarly, add the Flow for the Deactivate button, specifying the SelectedRole.roleId as input:

image

Now, at this point we should be able to get my role assignments in the list box, and also to be able to activate or deactivate the selected roles. I do want to add some more logic to the app though. Starting with activating/deactivating the buttons regarding the status of the role. On the Activate button, change the DisplayMode property to:

If(!SelectedRole.isElevated, DisplayMode.Edit, DisplayMode.Disabled)

Like this:

image

And similarly for the DisplayMode property for the Deactivate button:

If(SelectedRole.isElevated, DisplayMode.Edit, DisplayMode.Disabled)

image

Next, I want to add some hint text to the text box for activation reason, this is done this way:

image

At the bottom I have created a label with a message, this lblShowMessage control I want to set visible if I try to activate a role without specifying a reason:

image

Now I need to make some changes to the Activate button and OnSelect method to implement some logic:

image

Lets break that down: First I use the Set method to control wait to indicate that the App is busy, then I do an If check on the txtActivationReason text box, and if I have specified a reason I proceed to run the Flow to self activate the role. After that I clear the txtActivationReason text box, and call the flow for refresh the roles in the list box. At the end I use a ShowMessage variable, setting it to true or false, which in turn is connected to the Visible property of the lblShowMessage control like this:

image

Here is the Activate button OnSelect code for you to copy:

Set(wait,true);
If(!IsBlank(txtActivationReason.Text),
PrivilegedRoleSelfActivate.Run(SelectedRole.roleId,txtActivationReason.Text);
Reset(txtActivationReason);
ClearCollect(MyPIMRoles,GetMyRoleAssignments.Run());
Set(wait,!true),
UpdateContext({ShowMessage: true});
UpdateContext({ShowMessage: false}))

And for the Deactivate button I change the OnSelect to:

image

I don’t need to check the txtActivationReason text box now, so I’ll just clear it and refresh the roles. Here is the code:

Set(wait,true);
PrivilegedRoleSelfDeactivate.Run(SelectedRole.roleId);
Reset(txtActivationReason);
ClearCollect(MyPIMRoles,GetMyRoleAssignments.Run());
Set(wait,!true)

I’ll also add a reset of the activation reason text box to the Refresh My Roles button:

image

And finally, at the OnSelect method of the lstMyRoles listbox, I’ll set the ShowMessage variable to false whenever I click on different roles in the list, so that any previous activation error message is not shown.

image

That should be it! We’ve now implemented some logic to the PowerApp, and are ready to publish and run the App.

Publish and Run the Azure AD PIM App

On the File menu click Save, and the Publish:

image

You can also Share the PowerApp in your organization:

image

(please see my previous blog post https://gotoguy.blog/2017/12/17/access-microsoft-graph-api-using-custom-connector-in-powerapps-and-flows/, and the sharing section at the end for details on the experience on this).

After you have published the PowerApp, you can click the Play button to run the PowerApp. First time you will need to accept permission:

image

After that you should be able to refresh your roles:

image

Let’s try to activate a role:

image

After I click the Activate button, the role will be activated, the list will be refreshed, and I can look at the Device Administrators role that it is now elevated and with an expiry time:

image

The Activate button is now disabled for that role, and the Deactivate button is enabled. Let’s try to deactivate the role again, clicking the Deactivate button. After a short time the role is deactivated, elevation status is false:

image

So now the Azure AD PIM App is working as intended, every user that have been assigned a role can now elevate themselves using the App. Even better is that my users also now can use the mobile PowerApps app to run this from their mobile phones!

As an administrator I can also see the results of the activations in the Directory roles audit history:

image

Known issues and tips

The biggest issue right now is a problem with the Microsoft Graph beta endpoint for selfactivate the role, as it currently does not support activating roles that require MFA. So I you want to use Microsoft Graph for activating roles now, you have to disable the requirement of requiring MFA for activation, either by default for all roles or for roles individually:

image

I’ll keep you posted of any changes to this issue, and update the blog post if that changes.

Another tip is that if you want to do some reporting on how many users are using the PowerApp for activating their PIM roles, you can for example use the ticketSystem string for specifying a constant like below:

image

That should wrap up this blog post, hope this will be useful for you, thanks for reading Smile

Using the Azure Run As Account in Azure Automation to Connect to Azure AD with a Service Principal

If you are using Azure Automation and working with Runbooks for automating against your Azure subscription, you can create an Azure Run As Account for authenticating and logging in to your subscription. The Azure Run As Account is configured in your Automation Account, and will do the following:

  • Creates an Azure AD application with a self-signed certificate, creates a service principal account for the application in Azure AD, and assigns the Contributor role for the account in your current subscription.
  • Creates an Automation certificate asset named AzureRunAsCertificate in the specified Automation account. The certificate asset holds the certificate private key that’s used by the Azure AD application.
  • Creates an Automation connection asset named AzureRunAsConnection in the specified Automation account. The connection asset holds the applicationId, tenantId, subscriptionId, and certificate thumbprint.

You can read more about setting up Azure Run As Accounts here, including how to do a more customized setup with PowerShell: https://docs.microsoft.com/en-us/azure/automation/automation-create-runas-account.

Something worth noting is that this Azure Run As Account will by default have the Contributor role to your entire subscription, so it would make sense to look into changing RBAC settings for the subcription or resource groups if you want to limit that. Also, all users that have access to the Automation Account will also have the opprotunity to use this Azure Run As Account.

Having said that, the Azure Run As Account is a great way to authenticate securely with certificates and a service principal name without needing to store a username and password in a credential object.

So I thought, wouldn’t it be great if we could use this same Azure Run As Account to log in to your Azure AD tenant for the possibility to run Azure AD PowerShell commands? The reason I thought of this is because of this article showing how to authenticate with Azure AD v2 PowerShell and Service Principal: https://docs.microsoft.com/en-us/powershell/azure/active-directory/signing-in-service-principal?view=azureadps-2.0. In this short blog post will show you how to do this.

Getting the Azure Run As Account details

First, look into your Automation Account and Account Settings to find any Run as accounts:

image

Click on the Azure Run As Account to see the details (or to create one if you haven’t before). Take a note of the Service Principal Object Id, we will use that later:

image

Creating a Runbook that Authenticates with Service Principal to Azure AD

Now, let’s create a PowerShell runbook using the Azure Run As Account for connecting to Azure AD.

First, I set the connection name  “AzureRunAsConnection”, and then save that as a variable for holding my service principal details using the Get-AutomationConnection cmdlet.

Then, logging in to Azure AD is done with specifiying TenantId, ApplicationId and CertificateThumbprint parameters, as shown below:

image

This will log in my service principal to Azure AD and I’m ready to run some commands, for example getting some organization details for the tenant, or counting different types of user objects:

image

Running this runbook will for example show me this output for my tenant. This shows that I successfully authenticated with the Azure Run As Account service principal:

image

Here is a link to a Gist where I have included the above PowerShell runbook script:

Role Permissions for the Service Principal

Depending on what kind of automation you want to do against Azure AD, especially if you want to write data, you will have to add the Service Principal to an Azure AD Role. Here is a couple of examples, using the object id for the service principal I told you to note earlier from the Azure Run As Account:

# Get the associated Service Principal for the Azure Run As Account
$runAsServicePrincipal = Get-AzureADServicePrincipal -ObjectId ""

# Add the Service Principal to the Directory Readers Role
Add-AzureADDirectoryRoleMember -ObjectId (Get-AzureADDirectoryRole | where-object {$_.DisplayName -eq "Directory Readers"}).Objectid -RefObjectId $runAsServicePrincipal.ObjectId

# Add the Service Principal to the User Administrator Role
Add-AzureADDirectoryRoleMember -ObjectId (Get-AzureADDirectoryRole | where-object {$_.DisplayName -eq "User Account Administrator"}).Objectid -RefObjectId $aaAadUser.ObjectId

# Add the Service Principal to the Global Administrator Role
Add-AzureADDirectoryRoleMember -ObjectId (Get-AzureADDirectoryRole | where-object {$_.DisplayName -eq "Company Administrator"}).Objectid -RefObjectId $runAsServicePrincipal.ObjectId

That concludes this short blog post, hope it has been helpful! Thanks for reading and remember to share if it was useful Smile

Azure MFA Report Dashboard in Azure Portal–The Good, The Bad and The Ugly

If you are working with EMS and implementing Azure AD, Intune, MDM, MAM, Information Protection and more, you can build yourself some great dashboards in the Azure Portal using tiles and pin blades to your customized dashboard. This is an example from my own workplace:

image

Often when I work with projects implementing Identity & Access, Conditional Access and Azure MFA, I wish I could have a dashboard to report on MFA registration, and be able to pin that to my EMS dashboard as shown above.

It might be in the future that Azure MFA registrations and methods will be native in the portal, but for now this information have to be retreived in another way. In this blog post I will show you how you can set up a solution for showing this information. I will use the Markdown Tile from the gallery for displaying this information, and in the end it will look like this:

I referred in the title of this blog post to the good, the bad and the ugly, and by that I mean the process of setting this up, because it starts easy enough in the beginning but it will get more “ugly” in the end 😉

The Good – Setting up the Markdown Tile

I will use the Markdown Tile for the content in my customized dashboard in my Azure Portal. The first part is easy to set up, just click Edit and find the Markdown tile from the gallery, as shown below:

image

Drag the tile to a place you want it on your dashboard, and the Edit the title, subtitle and content as prompted:

image

There is a sample content provided, other than that you can write your own markdown. I will not get into details on markdown format here, there is a lot of good guides for learning the format, for example this: https://guides.github.com/features/mastering-markdown/. I will however provide you with a sample for reporting MFA registrations and default methods. This is how I set up my markdown tile:

image

And here is a link to my github repository where you can get the complete MFAReport.md file sample:

https://github.com/skillriver/AzureMFADashboard/blob/master/MFAReport.md

Now we need to fill that markdown tile with some real Azure AD MFA report data to report on.

The Bad – PowerShell Script for getting MFA registration and methods to Markdown

So the “bad” news is that we are reliant on running some Azure AD PowerShell commands for getting user details for MFA registration and methods. For now we are also reliant on the Azure AD v1 PowerShell (MSOnline) Module, as the new v2 AzureAD Module does not yet have any methods to get MFA authentication data. We cannot use the Microsoft Graph API either to get MFA user data, but I expect that to change in the future.

So lets look at the script I use, and after authenticating and connecting to Azure AD in my tenant with Connect-MSOLService, I will run the following commands to get details from each user where there has been configured one or more StrongAuthenticationMethods, and Group on those methods and save the results to a hash table. The results are stored in the $authMethodsRegistered object variable. Similarly I run the command once more, filtering on only showing the methods that are set to default for each user, and save to the $authMethodsDefault variable.

# Connect to MSOnline PowerShell (Azure AD v1)
Connect-MsolService

# Get MFA Methods Registered as Hash Table
$authMethodsRegistered = Get-MsolUser -All | Where-Object {$_.StrongAuthenticationMethods -ne $null} | Select-Object -Property UserPrincipalName -ExpandProperty StrongAuthenticationMethods `
| Group-Object MethodType -AsHashTable -AsString

# Get Default MFA Methods as Hash Table
$authMethodsDefault = Get-MsolUser -All | Where-Object {$_.StrongAuthenticationMethods -ne $null} | Select-Object -Property UserPrincipalName -ExpandProperty StrongAuthenticationMethods `
| Where-Object {$_.IsDefault -eq $true} | Group-Object MethodType -AsHashTable -AsString

# Create a Custom Object for MFA Data
$authMethodsData = New-Object PSObject
$authMethodsData | Add-Member -MemberType NoteProperty -Name AuthPhoneRegistered -Value $authMethodsRegistered.TwoWayVoiceMobile.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name AuthPhoneAppRegistered -Value $authMethodsRegistered.PhoneAppOTP.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name OfficePhoneRegistered -Value $authMethodsRegistered.TwoWayVoiceOffice.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name AlternatePhoneRegistered -Value $authMethodsRegistered.TwoWayVoiceAlternateMobile.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name OneWaySMSDefault –Value $authMethodsDefault.OneWaySMS.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name PhoneAppNotificationDefault –Value $authMethodsDefault.PhoneAppNotification.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name PhoneAppOTPDefault –Value $authMethodsDefault.PhoneAppOTP.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name TwoWayVoiceMobileDefault –Value $authMethodsDefault.TwoWayVoiceMobile.Count
$authMethodsData | Add-Member -MemberType NoteProperty -Name TwoWayVoiceOfficeDefault –Value $authMethodsDefault.TwoWayVoiceOffice.Count

# Write to Markdown file
"## MFA Authentication Methods`n" | Set-Content .\MFAReport.md -Force -Encoding UTF8
"### Registered`n" | Add-Content .\MFAReport.md -Encoding UTF8
"The following methods has been registered by users:`n" | Add-Content .\MFAReport.md -Encoding UTF8
"| Method | Count |" | Add-Content .\MFAReport.md -Encoding UTF8
"|:-----------|:-----------|" | Add-Content .\MFAReport.md -Encoding UTF8
"| Authentication Phone | " + [string]$authMethodsData.AuthPhoneRegistered + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| Phone App | " + [string]$authMethodsData.AuthPhoneAppRegistered + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| Alternate Phone | " + [string]$authMethodsData.AlternatePhoneRegistered + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| Office Phone | " + [string]$authMethodsData.OfficePhoneRegistered + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"" | Add-Content .\MFAReport.md -Encoding UTF8
"### Default Method" | Add-Content .\MFAReport.md -Encoding UTF8
"The following methods has been configured as default by users:" | Add-Content .\MFAReport.md -Encoding UTF8
"" | Add-Content .\MFAReport.md -Encoding UTF8
"| Method | Count |" | Add-Content .\MFAReport.md -Encoding UTF8
"|:-----------|:-----------|" | Add-Content .\MFAReport.md -Encoding UTF8
"| OneWay SMS | " + [string]$authMethodsData.OneWaySMSDefault + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| Phone App Notification | " + [string]$authMethodsData.PhoneAppNotificationDefault + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| Phone App OTP | " + [string]$authMethodsData.PhoneAppOTPDefault + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| TwoWay Voice Mobile | " + [string]$authMethodsData.TwoWayVoiceMobileDefault + " |" | Add-Content .\MFAReport.md -Encoding UTF8
"| TwoWay Voice Office Phone | " + [string]$authMethodsData.TwoWayVoiceOfficeDefault + " |`n" | Add-Content .\MFAReport.md -Encoding UTF8
"Last reported " + [string](Get-Date) | Add-Content .\MFAReport.md -Encoding UTF8

"" | Add-Content .\MFAReport.md

The complete PowerShell script can be found at my GitHub repository here:

https://github.com/skillriver/AzureMFADashboard/blob/master/MFAStrongAuthenticationUserReport.ps1

So now we have a script where we can get MFA authentication details for each user and create a markdown file that we can use in the tile in the Azure Portal custom dashboard. But it is all a manual process now, and it works fine for an ad hoc update. If we want to automate however, we have to get into the “ugly” stuff 😉

The Ugly – Automating Markdown creation and update Dashboard

This part requires multiple steps. First we need to schedule and run the PowerShell commands from above. Then we need to find a way to update the customized dashboard tile with the updated markdown file. To summary, this is what we need now:

  • Schedule the PowerShell script to run automatically. We can use Azure Automation for that.
  • Programmatically change the markdown tile in the customized dashboard. We can use Azure Resource Manager Rest API for that.

Lets get into the Azure Automation solution first. To run a PowerShell script I will need to create a Runbook, and in that Runbook I need to authenticate to Azure AD. I can define a Credential Asset with a username and password for a global admin user, but I like to use the least privilege possible, and besides that all my global admins are either protected by Azure AD PIM and/or MFA, so that won’t work. I prefer to use a service principal whereever possible, but after testing extensively with Connect-MSOLService that is not supported either.

So I tested with a dedicated Azure AD credential account, first by only adding the user to the Directory Readers role. I was able to list all users with Get-MSOLUser, but not any StrongAuthentication info. Neither did it work with Security Readers. In the end I added the user account to User Administrator role in Azure AD, and I was successful getting StrongAuthentication methods.

So, in my automation accont I will add or reuse my credentials:

image

Next, I will create a new PowerShell script based Runbook, basically I will use the PowerShell script from earlier in the blog, but with a couple of added parameter and getting the credential using the Get-PSAutomationCredential method. This is how it looks, you will get link to the complete script later:

image

And after testing, I can see that I successfully will get the MFAReport.md content (added a Get-Content .\MFAReport.md at the end to display the output):

image

Now that we have a solution for running the PowerShell script and generating the markdown file, the next part is how to update that data in the custom dashboard. And for that we need to look into programatically changing Azure Portal dashboards. There is a good resource and starting point for that in this article: https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-dashboards-create-programmatically.

First you need to share the custom dashboard, remember to include the markdown tile we set up in the first part of this blog post. At the top in the portal dashboard, select the Share button:

image

By sharing the dashboard will published as an Azure resource. Specify a name, select the subscription and either use the default dashboard resource group or select an existing one:

image

Go to Resource Explorer in the Portal:

image

Navigate to Subscriptions, Resource Groups, and find the resource group and resource containing the custom dashboard. From there you will be able to see the JSON definition of the dashboard and specifically the markdown tile containing the content we want to update:

image

So for next process now we need to copy this complete JSON definition containing all your tiles including the markdown tile. Locally on your computer, create a .json file in your favorite JSON editor, I use Visual Studio Code for this, and paste in the content. I have named my file DeploymentTemplateMFAReport.json.

Now we need to change this template to be ready for deployment, and for that we need to add or change a couple of things. First, in the start of the JSON file, add schema and versioning, and parameters, variables and resources section like I have shown below in line 1-17:

image

I have chosen to use 3 parameters, the markdown content itself, and name of the dashboard and the title of the dashboard.

Next, find the tile for the markdown content, and change the content value to the value of the parameter, like I have done at line 113 here:

image

And last, at the end of the json template, add and change the following settings, I have used my parameters for the dashboard name and the dashboard title here in the lines 401-411:

image

My deployment template for the customized dashboard is now completely general and can be used in every environment. In fact you are welcome to borrow and use my template from above her, I have included it in my github repository:

https://github.com/skillriver/AzureMFADashboard/blob/master/DeploymentTemplateMFAReport.json

Working locally in my Visual Studio Code editor, I can now test the deployment using Azure PowerShell, as shown below and described with these simple steps:

  1. Connect to Azure Resource Manager and select the Subscription
  2. Specify a variable for the Resource Group you want to deploy to
  3. The MFAreport.md file (which we created earlier) need some converting to JSON format, I’m removing all espace characters and any uneeded special characters
  4. Specify variable names your environment for name and title for the dashboard
  5. Deploy the custom dashboard to the resource group

image

However, now that we can test the deployment, I want to schedule a deployment using Azure Automation, and I will continue on my previous runbook from before. But first we need to set up some connections for authenticating to Azure and some variables.

I Azure Automation we can create an Azure Run As Account, this will also create a service principal. If you navigate to your Automation Account in the Azure Portal, and go to the section called Run as accounts, you can create an Azure Run As Account automatically, as I have done here:

image

If I look more closely at this generated Run As Account, I can see details for Azure AD App Registration, Service Principal, Certificate and more. This account will also automatically be assigned Contributor role for my Azure Subscription. If you want more control over Azure Run As Accounts, you can create your own as described in the following article: https://docs.microsoft.com/en-us/azure/automation/automation-create-runas-account

image

I will use this Azure Run As account in my environment to deploy the dashboard resource, I’ll just need to make sure the account has contributor access to the resource group. Next I will set ut a few variables under the Variables section for my Automation Account, I will use these variables when I deploy the resource:

image

Now we are ready to finally put together the complete Runbook and test it. You will have the complete link later in the blog post, but I will share some screenshots first:

After I’ve connected with Connect-MSOLService I’m creating a variable for the markdown content, so I’ve changed from earlier when I saved a .md file temporarily, now I just adding lines using the newline special character (`n):

image

The next part is for logging in to Azure (using the Azure Run As Account mentioned above), and then getting my variables ready for deployment:

image

Then I convert the markdown content to Json format, and removing any escape characters that I don’t need:

image

And then deploy the dashboard resource with parameters for markdown content and dashboard name & title. Note that I’m using my deployment template as a source from my github repository via the TemplateUri property:

image

You can use any TemplateUri you want, for example from a more private source like a storage account blob etc.

Testing the Runbook gives the following output, which shows it was successful:

image

When I now go and refresh the dasboard in the portal, I can see that the markdown tile has been updated:

image

That leaves me with just publishing and scheduling the runbook:

image

When creating a new schedule specify a name and recurrence:

image

Link the schedule to the runbook and any needed parameters, I have to specify my credential that are allowed to Connect-MSOLService:

image

That concludes this lengthy blog post. The script will now run regularly and update my custom markdown tile with MFA report data.

Here is the link to the PowerShell script used in my Azure Automation runbook, enjoy your MFA Reporting!

https://github.com/skillriver/AzureMFADashboard/blob/master/MFAStrongAuthenticationUserReportAutomation.ps1

 

Getting started with Azure AD PIM PowerShell Module

This is a short blog post showing how you can get started and some examples of using the PIM PowerShell Module for Azure AD Privileged Identity Management.

You can read more about Azure AD Privileged Identity Management here: https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-identity-management-configure, or by just using the following short URL: https://aka.ms/AzureADPIM!

Installing the Azure AD PIM PowerShell Module

Since there are no PIM related commands in the AzureAD or AzureADPreview PowerShell Modules, we will have to install a separate module for PIM. You can find this module at the PowerShell Gallery here: https://www.powershellgallery.com/packages/Microsoft.Azure.ActiveDirectory.PIM.PSModule

To install the module just run the following command in an elevated PowerShell session:

Install-Module Microsoft.Azure.ActiveDirectory.PIM.PSModule

image

After installing you can list the available commands in the PIM module:

Get-Command -Module Microsoft.Azure.ActiveDirectory.PIM.PSModule

image

Here is a short explanation of the available commands:

  • Connect-PimService. Prompts you to log on with an Azure AD Account that might have any PIM roles assigned. You can optionally specify a username, tenantname or credential object as parameters. Especially tenantname would be useful if you are a guest user with roles assigned in another tenant.
  • Show-PimServiceConnection. This will show the active PimService session details you have, after connecting with Connect-PimService.
  • Get-PrivilegedRoleAssignment. This would list any permanent or eligible role assignments the user you connected with using Connect-PimService has.
  • Enable-PrivilegedRoleAssignment. This command will enable a specified role assignments. It is required to specify which role either by RoleId or by a RoleAssignment variable. It is also required to specify a Duration for activation. Optional parameters includes Reason, TicketNumber, TicketSystem and StartTimeUtc.
  • Disable-PrivilegedRoleAssignment. If you previously have activated one or more roles with Enable-PrivilegedRoleAssignement, you can preemptively deactivate these roles again before the duration expires. You must specify a RoleId or RoleAssignment variable.
  • Disconnect-PimService. Disconnects any previous sessions to PimService.

Examples of Azure AD PIM Commands

In the following I will show some examples of using the Azure AD PIM Module.

Connect-PimService

In the following I’m connecting with a specified username, if it is required to use Azure MFA for this user I will be prompted for that as well:

Connect-PimService –UserName <username>

image

image

After authenticating, PIM service connection details are returned, here slightly masked:

image

The above returned is exactly the same as would be returned by running the command:

Show-PimServiceConnection

Get-PrivilegedRoleAssignment

This command will list any role assignments, permanent or eligible your user might have. Here is a couple of examples for outputs for two different admin users. The first user is eligible for Security Administrator and Privileged Role Administrator, and permanent for Global Administrator:

image

The second admin user is eligible for Exchange Administrator and Global Administrator:

image

If I want to assign a variable to a role assignment, I can do it like the following command:

$roleAssignment = Get-PrivilegedRoleAssignment | Where {$_.RoleName -eq "Privileged Role Administrator"}

I now have a role assignment variable I can use in the following commands.

Enable-PrivilegedRoleAssignment

To enable one of my roles, I need to specify a duration (PS! keep inside the allowed role settings for max duration!), and specify which role either by RoleId or RoleAssignment variable. Optional parameters like Reason etc can also be specified.

Here is a working example:

Enable-PrivilegedRoleAssignment –Duration 1 –RoleAssignment $roleAssignment –Reason “Add crmadmin to CRM Administrators”

After running the command, if successful it will return as a submitted request for activating role membership.

image

By running Get-PrivilegedRoleAssignment again, we can now see that the role of “Privileged Role Administrator” is indeed activated (elevated), and with a ExpirationTime (UTC time):

image

PS! If you have required MFA on activation for the role, one of two things will happen:

  1. If the user already has verified the identity with Azure MFA when authenticating with Connect-PimService, the user will not be asked again. This is the same experience as by using the Azure Portal for activating roles.
  2. If the user hasn’t verified with Azure MFA, the user will be prompted when activating the role, similar to this example:

    image

Disable-PrivilegedRoleAssignment

Any roles you have activated will automatically deactivate after the duration specified has passed. However, if you are finished doing administrative tasks with your role, you can deactivate the role manually.

To deactivate an active assignment, run the following command specifying a RoleId or RoleAssignment variable:

Disable-PrivilegedRoleAssignment –RoleAssignment $roleAssignment

image

Disconnect-PimService

To end your connection to Azure AD PIM Service, run the following command:

Disconnect-PimService

After running that command you can also see that there are no role assignments to list anymore.

image

Hope these commands and examples have been helpful, enjoy working with Azure AD PIM!