Tag Archives: Automation

Schedule Tesla Heating with Microsoft Flow from Calendar @microsoftflow

My Skill colleague Pål-Andre Kjøniksen wrote a blog post on how he can control the heating in his Tesla Model S based on his Office 365 Calendar appointments and Microsoft Flow.

https://www.skill.no/blogg/samhandlingsbloggen/2017-01-25-microsoft-flow-styrer-varmen-i-teslaen/.

The blog post is in Norwegian, but it should be fairly simple to follow the steps, where the idea was that if he creates a Calendar appointment that starts with “Tesla:”, the heating will start up 20 minutes before that, making sure that the car is warm when he drives off.

Displaying Azure Automation Runbook Stats in OMS via Performance Collection and Operations Manager

Wouldn’t it be great to get some more information about your Azure Automation Runbooks in the Operations Management Suite Portal? That’s a rhetorical question, of course the answer will be yes!

While Azure Automation is a part of the suite of components in OMS, today you only get the following information from the Azure Automation blade:

The blade shows the number of runbooks and jobs from the one Automation Account you have configured. You can only configure one Automation Account at a time, and for getting more details you are directed to the Azure Portal.

I wanted to use my OMS-connected Operations Manager Management Group, and use a PowerShell script rule to get some more statistics for Azure Automation and display that in OMS Log Analytics as Performance Data. I will do this using the “Sample Management Pack – Wizard to Create PowerShell script Collection Rules” described in this blog article http://blogs.msdn.com/b/wei_out_there_with_system_center/archive/2015/09/29/oms-collecting-nrt-performance-data-from-an-opsmgr-powershell-script-collection-rule-created-from-a-wizard.aspx.

I will use the AzureRM PowerShell Module for the PowerShell commands that will connect to my Azure subscription and get the Azure Automation Runbooks data.

Getting Ready

Before I can create the PowerShell script rule for gettting the Azure Automation data, I have to do some preparations first. This includes:

  1. Importing the “Sample Management Pack – Wizard to Create PowerShell script Collection Rules” to my Operations Manager environment.
    1. This can be downloaded from Technet Gallery at https://gallery.technet.microsoft.com/Sample-Management-Pack-e48040f7.
  2. Install the AzureRM PowerShell Module (at the chosen Target server for the PowerShell Script Rule).
    1. I chose to install it from the PowerShell Gallery using the instructions here: https://azure.microsoft.com/en-us/documentation/articles/powershell-install-configure/
    2. If you are running Windows Server 2012 R2, which I am, follow the instructions here to support the PowerShellGet module, https://www.powershellgallery.com/GettingStarted?section=Get%20Started.
  3. Choose Target for where to run the AzureRM commands from
    1. Regarding the AzureRM and where to install, I decided to use the SCOM Root Management Server Emulator. This server will then run the AzureRM commands against my Azure Subscription.
  4. Choose account for Run As Profile
    1. I also needed to think about the run as account the AzureRM commands will run under. As we will see later the PowerShell Script Rules will be set up with a Default Run As Profile.
    2. The Default Run As Profile for the RMS Emulator will be the Management Server Action Account, if I had chosen another Rule Target the Default Run As Profile would be the Local System Account.
    3. Alternatively, I could have created a custom Run As Profile with a user account that have permissions to execute the AzureRM cmdlets and connect to and read the required data from the Azure subscription, and configure the PowerShell Script rules to use that.
    4. I decided to go with the Management Server Action Account, in my case SKILL\scom_msaa. This account will execute the AzureRM PowerShell cmdlets, so I need to make sure that I can login to my Azure subscription using that account.
  5. Next, I started PowerShell ISE with “Run as different user”, specifying my scom_msaa account. I run the commands below, as I wanted to save the password for the user I’m going to connect to the Azure subscription and get the Automation data. I also did a test import-module of the AzureRM modules I will need in the main script.

The commands above are here in full:


# Prepare to save encrypted password

# Verify that logged on as scom_msaa
whoami

# Get the password
$securepassword = Read-Host -AsSecureString -Prompt Enter Azure AD account password:

# Filepath for encrypted password file
$filepath = C:\users\scom_msaa\AppData\encryptedazureadpassword.txt

# Save password encrypted to file
ConvertFrom-SecureString -SecureString $securepassword | Out-File -FilePath $filepath

Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM
Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM.Profile
Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM.Automation

At this point I’m ready for the next step, which is to create some PowerShell commands for the Script Rule in SCOM.

Creating the PowerShell Command Script for getting Azure Automation data

First I needed to think about what kind of Azure Automation and Runbook data I wanted to get from my Azure Subscription. I decided to get the following values:

  • Job Count Last Day
  • Job Count Last Month
  • Job Count This Month
  • Job Minutes This Month
  • Runbooks in New State
  • Runbooks in Published State
  • Runbooks in Edit State
  • PowerShell Workflow Runbooks
  • Graphical Runbooks
  • PowerShell Script Runbooks

I wanted to have the statistics for Runbooks Jobs to see the activity of the Runbooks. As I’m running the Free plan of Azure Automation, I’m restricted to 500 minutes a month, so it makes sense to count the accumulated job minutes for the month as well.

In addition to this I want some statistics for the number of Runbooks in the environment, separated on New, Published and Edit Runbooks, and the Runbook type separated on Workflow, Graphical and PowerShell Script.

The PowerShell Script Rule for getting these data will be using the AzureRM PowerShell Module, and specifically the cmdlets in AzureRM.Profile and AzureRM.Automation:

To log in and authenticate to Azure, I will use the encrypted password saved earlier, and create a Credential object for the login:

Initializing the script with date filters and setting default values for variables. I decided to create the script so that I can get data from all the Resource Groups I have Automation Accounts in. This way, If I have multiple Automation Accounts, I can get statistics combined for each of them:

Then, looping through each Resource Group, running the different commands to get the variable data. Since I potentially will loop through multiple Resource Groups and Automation Accounts, the variables will be using += to add to the previous loop value:

After setting each variable and exiting the loop, the $PropertyBag can be filled with the values for the different counters:

The complete script is shown below for how to get those Azure Automation data via SCOM and PowerShell Script Rule to to OMS:


# Debug file
$debuglog = $env:TEMP+\powershell_perf_collect_AA_stats_debug.log

Date | Out-File $debuglog

Who Am I: | Out-File $debuglog -Append
whoami |
Out-File $debuglog -Append

$ErrorActionPreference = Stop

Try {

If (!(Get-Module –Name AzureRM)) { Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM }
If (!(Get-Module –Name AzureRM.Profile)) { Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM.Profile }
If (!(Get-Module –Name AzureRM.Automation)) { Import-Module C:\Program Files\WindowsPowerShell\Modules\AzureRM.Automation }

# Get Cred for ARM
$filepath = C:\users\scom_msaa\AppData\encryptedazureadpassword.txt
$userName = myAzureADAdminAccount
$securePassword = ConvertTo-SecureString (Get-Content -Path $FilePath)
$cred = New-Object -TypeName System.Management.Automation.PSCredential ($username, $securePassword)

# Log in and sett active subscription
Login-AzureRmAccount -Credential $cred

$subscriptionid = mysubscriptionID

Set-AzureRmContext -SubscriptionId $subscriptionid

$API = new-object -comObject MOM.ScriptAPI

$aftertime = $(Get-Date).AddHours(1)
$afterdate_lastday = $(Get-Date).AddDays(1)
$afterdate_lastmonth = $(Get-Date).AddDays(30)
$afterdate_thismonth = $(Get-Date).AddDays(($(Get-Date).Day)+1)

$AutomationRGs = @(MyResourceGroupName1,MyResourceGroupName2)

$PropertyBags=@()

$newrunbooks = 0
$publishedrunbooks = 0
$editrunbooks = 0
$scriptrunbooks = 0
$graphrunbooks = 0
$powershellrunbooks = 0
$jobcountlastday = 0
$jobcountlastmonth = 0
$jobcountthismonth = 0
$jobminutesthismonth = 0

ForEach ($AutomationRG in $AutomationRGs) {

$rmautomationacct = Get-AzureRmAutomationAccount -ResourceGroupName $AutomationRG

$newrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.State -eq New}).Count

$publishedrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.State -eq Published}).Count

$editrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.State -eq Edit}).Count

$scriptrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.RunbookType -eq Script}).Count

$graphrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.RunbookType -eq Graph}).Count

$powershellrunbooks += (Get-AzureRmAutomationRunbook -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
|
Where {$_.RunbookType -eq PowerShell}).Count

$jobcountlastday += (Get-AzureRmAutomationJob -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
-StartTime
$afterdate_lastday).Count

$jobcountlastmonth += (Get-AzureRmAutomationJob -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
-StartTime
$afterdate_lastmonth).Count

$jobcountthismonth += (Get-AzureRmAutomationJob -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
-StartTime
$afterdate_thismonth.ToLongDateString()).Count

$jobsthismonth = Get-AzureRmAutomationJob -AutomationAccountName $rmautomationacct.AutomationAccountName -ResourceGroupName $AutomationRG `
-StartTime
$afterdate_thismonth.ToLongDateString() | Select-Object RunbookName, StartTime, EndTime, CreationTime, LastModifiedTime, @{Name=RunningTime;Expression={[TimeSpan]::Parse($_.EndTime $_.StartTime).TotalMinutes}}, @{Name=Month;Expression={($_.EndTime).Month}}

$jobminutesthismonth += [int][Math]::Ceiling(($jobsthismonth | Measure-Object -Property RunningTime -Sum).Sum)

}

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Job Count Last Day)
$PropertyBag.AddValue(Value, [UInt32]$jobcountlastday)
$PropertyBags += $PropertyBag

Job Count Last Day: | Out-File $debuglog -Append
$jobcountlastday | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Job Count Last Month)
$PropertyBag.AddValue(Value, [UInt32]$jobcountlastmonth)
$PropertyBags += $PropertyBag

Job Count Last Month: | Out-File $debuglog -Append
$jobcountlastmonth | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Job Count This Month)
$PropertyBag.AddValue(Value, [UInt32]$jobcountthismonth)
$PropertyBags += $PropertyBag

Job Count This Month: | Out-File $debuglog -Append
$jobcountthismonth | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Job Minutes This Month)
$PropertyBag.AddValue(Value, [UInt32]$jobminutesthismonth)
$PropertyBags += $PropertyBag

Job Minutes This Month: | Out-File $debuglog -Append
$jobminutesthismonth | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Runbooks in New State)
$PropertyBag.AddValue(Value, [UInt32]$newrunbooks)
$PropertyBags += $PropertyBag

Runbooks in New State: | Out-File $debuglog -Append
$newrunbooks | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Runbooks in Published State)
$PropertyBag.AddValue(Value, [UInt32]$publishedrunbooks)
$PropertyBags += $PropertyBag

Runbooks in Published State: | Out-File $debuglog -Append
$publishedrunbooks | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Runbooks in Edit State)
$PropertyBag.AddValue(Value, [UInt32]$editrunbooks)
$PropertyBags += $PropertyBag

Runbooks in Edit State: | Out-File $debuglog -Append
$editrunbooks | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, PowerShell Workflow Runbooks)
$PropertyBag.AddValue(Value, [UInt32]$scriptrunbooks)
$PropertyBags += $PropertyBag

PowerShell Workflow Runbooks: | Out-File $debuglog -Append
$scriptrunbooks | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, Graphical Runbooks)
$PropertyBag.AddValue(Value, [UInt32]$graphrunbooks)
$PropertyBags += $PropertyBag

Graphical Runbooks: | Out-File $debuglog -Append
$graphrunbooks | Out-File $debuglog -Append

$PropertyBag = $API.CreatePropertyBag()
$PropertyBag.AddValue(Instance, PowerShell Script Runbooks)
$PropertyBag.AddValue(Value, [UInt32]$powershellrunbooks)
$PropertyBags += $PropertyBag

PowerShell Script Runbooks: | Out-File $debuglog -Append
$powershellrunbooks | Out-File $debuglog -Append

$PropertyBags

} Catch {

Error Catched: | Out-File $debuglog -Append
$(
$_.Exception.GetType().FullName) | Out-File $debuglog -Append
$(
$_.Exception.Message) | Out-File $debuglog -Append

}

PS! I have included debugging and logging in the script, be aware though that doing $ErrorActionPreference=Stop will end the script if any errors, for example with logging, so it might be an idea to remove the debug logging when confirmed that everything works.

In the next part I’m ready to create the PowerShell Script Rule.

Creating the PowerShell Script Rule

In the Operations Console, under Authoring, create a new PowerShell Script Rule as shown below:

  1. Select the PowerShell Script (Performance – OMS Bound) Rule:I have created a custom destination management pack for this script.
  2. Specifying a Rule name and Rule Category: Performance Collection. As mentioned earlier in this article the Rule target will be the Root Management Server Emulator:
  3. Selecting to run the script every 30 minutes, and at which time the interval will start from:
  4. Selecting a name for the script file and timeout, and entering the complete script as shown earlier:
  5. For the Performance Mapping information, the Object name must be in the \\FQDN\YourObjectName format. For FQDN I used the Target variable for PrincipalName, and for the Object Name AzureAutomationRunbookStats, and adding the “\\” at the start and “\” between: \\$Target/Host/Property[Type=”MicrosoftWindowsLibrary7585010!Microsoft.Windows.Computer”]/PrincipalName$\AzureAutomationRunbookStatsI specified the Counter name as “Azure Automation Runbook Stats”, and the Instance and Value are specified as $Data/Property(@Name=’Instance’)$ and $Data/Property(@Name=Value)$. These reflect the PropertyBag instance and value created in the PowerShell script:
  6. After finishing the Create Rule Wizard, two new rules are created, which you can find by scoping to the Root Management Server Emulator I chose as target. Both Rules must be enabled, as they are not enabled by default:

At this point we are finished configuring the SCOM side, and can wait for some hours to see that data are actually coming into my OMS workspace.

Looking at Azure Automation Runbook Stats Performance Data in OMS

After a while I will start seeing Performance Data coming into OMS with the specified Object and Counter Name, and for the different instances and values.

In Log Search, I can specify Type=Perf ObjectName=AzureAutomationRunbookStats, and I will find the Results and Metrics for the specified time frame.

In the example above I’m highlighting the Job Minutes This Month counter, which will steadily increase for each month, and as we can see the highest value was 107 minutes, after when the month changed to March we were back at 0 minutes. After a while when the number of job minutes increases it will be interesting to follow whether this counter will go close to 500 minutes.

This way, I can now look at Azure Automation Runbook stats as performance data, showing different scenarios like how many jobs and runbook job minutes there are over a time period. I can also look at how what type of runbooks I have and what state they are in.

I can also create saved searches and alerts for my search criteria.

Creating OMS Alerts for Azure Automation Runbook Counters

There is one specific scenario for Alerts I’m interested in, and that is when I’m approaching my monthly limit on 500 job minutes.

“Job Minutes This Month” is a counter that will get the sum of all job minutes for all runbook jobs across all automation accounts. In the classic Azure portal, you will have a usage overview like this:

With OMS I would get this information over a time period like this:

The search query for Job Minutes This Month as I have defined it via the PowerShell Script Rule in OMS is:

Type=Perf ObjectName=AzureAutomationRunbookStats InstanceName=”Job Minutes This Month”

This would give me all results for the defined time period, but to generate an alert I would want to look at the most recent results, for example for the last hour. In addition, I want to filter the results for my alert when the number of job minutes are over the threshold of 450 which means I’m getting close to the limit of 500 free minutes per month. My query for this would be:

Type=Perf ObjectName=AzureAutomationRunbookStats InstanceName=”Job Minutes This Month” AND TimeGenerated>NOW-1HOUR AND CounterValue > 450

Now, in my test environment, this will give med 0 results, because I’m currently at 37 minutes:

Let’s say, for sake of testing an Alert, I add criteria to include 37 minutes as well, like this:

This time I have 2 results. Let’s create an alert for this, press the ALERT button:

For the alert I give it a name and base it on the search query. I want to check every 60 minutes, and generate alert when the number of results is greater than 1 so that I make sure the passing of the threshold is consistent and not just temporary.

For actions I want an email notification, so I type in a Subject and my recipients.

I Save the alert rule, and verify that it was successfully created.

Soon I get my first alert on email:

Now, that it works, I can remove the Alert and create a new one without the OR CounterValue=37, this I leave to you 😉

With that, this blog post is concluded. Thanks for reading, I hope this post on how to get more insights on your Azure Automation Runbook Stats in OMS and getting data via NRT Perfomance Collection has been useful 😉

Creating SCSM Incidents from OMS Alerts using Azure Automation – Part 2

This is the second part of a 2-part blog article that will show how you can create a new Service Manager Incident from an Azure Automation Runbook using a Hybrid Worker Group, and with OMS Alerts search for a condition and generate an alert which triggers this Azure Automation Runbook for creating an Incident in Service Manager via a Webhook and some contextual data for the Alert.

In Part 1 of the blog I prepared my Service Manager environment, and created Azure Automation Runbook and Assets to run via Hybrid Worker for generating incidents in Service Manager. In this second part of the blog I will configure my Operations Management Suite environment for OMS Alerting and Alert Remediation, and create an OMS Alert that will trigger this PowerShell Runbook.

Configuring OMS Alerting and Remediation

If you haven’t already for your OMS Workspace, you will need to enable the OMS Alerting and Alert Remediation under Settings and Preview Features. This is shown in the picture below:

Creating the OMS Alert

The next step is to create the OMS Alert. To do this I will need to do a Log Search with the criteria I want. For my example in this article, I will use an EventLog Search where I have previously added Azure AD Application Proxy Connector Event Log to OMS, and where I also have created a custom field for events where “The Connector was unable to connect to the service due to networking issues”.

The result of this Log Search is shown below, where I have 7 results in the last 7 days:

When I enabled OMS Alerting and Remediation under Settings, I can now see that I have a new Alert button at the bottom of the screen. I click on that to create my new OMS Alert.

I give the OMS Alert a descriptive name, using my current search query, and checking every 15 minutes for this alert. I can also specify a threshold over a specified time windows, in this case I want the Alert to trigger if there are more than 0 occurrences. If I want to I can also send an email notification to specified recipient(s).

Since I want to generate a SCSM Incident when this OMS Alert triggers, I select to Enable Remediation and select my Create-SCSMIncident Runbook.

After saving the OMS Alert I get a successful confirmation, and a link to where I can see my configured Alerts:

While in Preview I can only create up to 10 Alerts, and I can also remove them but not edit existing for now:

That is all I need to configure in Operations Management Suite to get the OMS Alert to trigger. Now I need to go back to the Azure Portal and configure some changes for my PowerShell Runbook!

Configuring Azure Automation PowerShell Runbook for Webhook and Hybrid Worker Group

In the Azure Portal and under my Automation Account and the PowerShell Runbook I created for Create-SCSMIncident (see Part 1), there will now automatically be created a Webhook for OMS Alert Remediation. This Webhook has a expiry date of one year ahead of creation.

I now need to specify the Parameters for the Webhook, so that it runs on my Hybrid Worker group:

After I have specified the Hybrid Worker group, any OMS Alerts will now trigger this Runbook and run on my local environment, and in this case create the SCSM incident as specified in the PowerShell Runbook. But, I also want to have some contextual data in the Incident, so I need to look at the Webhook data in the next step.

Configuring and using Webhook for contextual data in Runbook

Whenever the OMS Alert triggers the remediation Azure Automation Runbook via the Webhook, event information will be submitted from OMS to the Runbook via WebhookData input parameter.

An example of this is shown in the image below, where the WebhookData Input Parameter contains event information formatted as JSON (JavaScript Object Notation):

So, I need to configure my PowerShell Runbook to process this WebhookData, and to use that information when creating the Incident.

Let’s first take a look at the WebhookData. If I copy the input from above to for example Visual Studio Code, I can see clearer that the WebhookData consists of a WebhookName, RequestBody and RequestHeader. The values I’m looking for are in the RequestBody and SearchResults:

I update my PowerShell Runbook so that I can process the WebhookData, and get the WebhookName, WebhookHeaders and WebhookBody. When I have the WebhookBody, I can get the SearchResults and by using ConvertFrom-JSON loop trough the value array to get the fields I’m looking for like this:

In this case I want the Source, EventID and RenderedDescription, which also corresponds to the values from the Alert in OMS, as shown below. I then use these values for the Incident Title and Description in the PowerShell Runbook.

The complete Azure Automation PowerShell Runbook is shown below:

param (
[
object]$WebhookData
)

if ($WebhookData -ne $null) {

# Get Webhook Data
$WebhookName = $WebhookData.WebhookName
$WebhookHeaders = $WebhookData.RequestHeader
$WebhookBody = $WebhookData.RequestBody

# Writing Webhook Data to verbose output
Write-Verbose Webhook name: ‘$WebhookName’
Write-Verbose Webhook header:
Write-Verbose $WebhookHeaders
Write-Verbose Webhook body:
Write-Verbose $WebhookBody

# Searching Webhook Data for Value Results
$SearchResults = (ConvertFrom-JSON $WebhookBody).SearchResults
$SearchResultsValue = $SearchResults.value
Foreach ($item in $SearchResultsValue)
{
# Getting Alert Source, EventID and RenderedDescription
$AlertSource = $item.Source
Write-Verbose Alert Name: ‘$AlertSource’
$AlertEventId = $item.EventID
Write-Verbose Alert EventID: ‘$AlertEventId’
$AlertDescription = $item.RenderedDescription
Write-Verbose Alert Description: ‘$AlertDescription’
}

# Setting Incident Title and Description based on OMS Alert
$incident_title = OMS Alert: + $AlertSource
$incident_desc = $AlertDescription
}
else
{
# Setting Generic Incident Title and Description
$incident_title = Azure Automation Generated Alert
$incident_desc = This Incident is generated from an Azure Automation Runbook via Hybrid Worker
}

# Getting Assets for SCSM Management Server Name and Credentials
$scsm_mgmtserver = Get-AutomationVariable -Name SCSMServerName
$credential = Get-AutomationPSCredential -Name SCSMAASvcAccount

# Create Remote Session to SCSM Management Server
#
(Specified credential must be in Remote Management Users local group and SCSM operator)
$session = New-PSSession -ComputerName $scsm_mgmtserver -Credential $credential

# Import module for Service Manager PowerShell CmdLets
$SMDIR = Invoke-Command -ScriptBlock {(Get-ItemProperty hklm:/software/microsoft/System Center/2010/Service Manager/Setup).InstallDirectory} -Session $session
Invoke-Command -ScriptBlock { param($SMDIR) Set-Location -Path $SMDIR } -Args $SMDIR -Session $session
Import-Module .\Powershell\System.Center.Service.Manager.psd1 -PSSession $session

# Create Incident
Invoke-Command -ScriptBlock { param ($incident_title, $incident_desc)

# Get Incident Class
$IncidentClass = Get-SCSMClass -Name System.WorkItem.Incident

# Get Prefix for Incident IDs
$IncidentPrefix = (Get-SCSMClassInstance -Class (Get-SCSMClass -Name System.WorkItem.Incident.GeneralSetting)).PrefixForId

# Set Incident Properties
$Property = @{Id=$IncidentPrefix{0}
Title
= $incident_title
Description
= $incident_desc
Urgency
= System.WorkItem.TroubleTicket.UrgencyEnum.Medium
Source
= SkillSCSM.IncidentSourceEnum.OMS
Impact
= System.WorkItem.TroubleTicket.ImpactEnum.Medium
Status
= IncidentStatusEnum.Active
}

# Create the Incident
New-SCSMClassInstance -Class $IncidentClass -Property $Property -PassThru

} -Args $incident_title, $incident_desc -Session $session

Remove-PSSession $session

After publishing the updated Runbook I’m ready for the OMS Alert to trigger.

When the OMS Alert triggers

The next time this OMS Alert triggers, I can verify that the Runbook is started and an Incident is created. Since I also wanted an email notification, I also received that:

In Operations Management Suite, I search for any OMS Alerts generated by using the query “Type=Alert SourceSystem=OMS”:

In Azure Automation, I can see that the Runbook has launched a job:

And most importantly, I can see that the Incident is created in Service Manager with the info I specified:

That concludes this two-part blog article on how to create SCSM Incidents from OMS Alerts. OMS Automation rocks!

Creating SCSM Incidents from OMS Alerts using Azure Automation – Part 1

There has been some great announcements recently for OMS Alerts in Public Preview (http://blogs.technet.com/b/momteam/archive/2015/12/02/announcing-the-oms-alerting-public-preview.aspx) and Webhooks support for Hybrid Worker Runbooks (https://azure.microsoft.com/en-us/updates/hybrid-worker-runbooks-support-webhooks/). This opens up for some scenarios I have been thinking about.

This 2-part blog will show how you can create a new Service Manager Incident from an Azure Automation Runbook using a Hybrid Worker Group, and with OMS Alerts search for a condition and generate an alert which triggers this Azure Automation Runbook for creating an Incident in Service Manager via a Webhook and some contextual data for the Alert.

This is the first part of this blog post, so I will start by preparing the Service Manager environment, creating the Azure Automation Runbook, and testing the Incident creation via the Hybrid Worker.

Prepare the Service Manager Environment

First I want to prepare my Service Manager Environment for the Incident creation via Azure Automation PowerShell Runbooks. I decided to create a new Incident Source Enumeration for ‘Operations Management Suite’, and also to create a new account with permissions to create incidents in Service Manager to be used in the Runbooks.

To create the Source I edited the Library List for Incident Source like this:

To make it easier to refer to this Enumeration Value in PowerShell scripts, I define my own ID in the corresponding Management Pack XML:

And specifying the DisplayString for the ElementID for the Languages I want:

The next step is to prepare the account for the Runbook. As Azure Automation Runbooks on Hybrid Workers will run as Local System, I need to be able to run my commands as an account with permissions to Service Manager and to create Incidents.

I elected to create a new local Active Directory account, and give that account permission to my Service Manager Management Server.

With the new account created, I added it to the Remote Management Users local group on the Service Manager Management Server:

Next I added this account to the Advanced Operators Role Group in Service Manager:

Adding the account to the Advanced Operators group is more permission than I need for this scenario, but will make me able to use the same account for other work item scenarios in the future.

With the Service Manager Enviroment prepared, I can go to the next step which is the PowerShell Runbook in Azure Automation.

Create an Azure Automation Runbook for creating SCSM Incidents

I created a new PowerShell Script based Runbook in Azure Automation for Creating Incidents. This Runbook are using a Credential Asset to run Remote PowerShell session commands to my Service Manager Management Server. The Credential Asset is the local Active Directory Account I created in the previous step:

I also have created a variable for the SCSM Management Server Name to be used in the Runbook.

The PowerShell Runbook can then be created in Azure Automation, using my Automation Assets, and connecting to Service Manager for creating a new Incident as specified:

The complete PowerShell Runbook is show below:

# Setting Generic Incident Title and Description
$incident_title = Azure Automation Generated Alert
$incident_desc = This Incident is generated from an Azure Automation Runbook via Hybrid Worker

# Getting Assets for SCSM Management Server Name and Credentials
$scsm_mgmtserver = Get-AutomationVariable -Name SCSMServerName
$credential = Get-AutomationPSCredential -Name SCSMAASvcAccount

# Create Remote Session to SCSM Management Server
#
(Specified credential must be in Remote Management Users local group and SCSM operator)
$session = New-PSSession -ComputerName $scsm_mgmtserver -Credential $credential

# Import module for Service Manager PowerShell CmdLets
$SMDIR = Invoke-Command -ScriptBlock {(Get-ItemProperty hklm:/software/microsoft/System Center/2010/Service Manager/Setup).InstallDirectory} -Session $session
Invoke-Command -ScriptBlock { param($SMDIR) Set-Location -Path $SMDIR } -Args $SMDIR -Session $session
Import-Module .\Powershell\System.Center.Service.Manager.psd1 -PSSession $session

# Create Incident
Invoke-Command -ScriptBlock { param ($incident_title, $incident_desc)

# Get Incident Class
$IncidentClass = Get-SCSMClass -Name System.WorkItem.Incident

# Get Prefix for Incident IDs
$IncidentPrefix = (Get-SCSMClassInstance -Class (Get-SCSMClass -Name System.WorkItem.Incident.GeneralSetting)).PrefixForId

# Set Incident Properties
$Property = @{Id=$IncidentPrefix{0}
Title
= $incident_title
Description
= $incident_desc
Urgency
= System.WorkItem.TroubleTicket.UrgencyEnum.Medium
Source
= SkillSCSM.IncidentSourceEnum.OMS
Impact
= System.WorkItem.TroubleTicket.ImpactEnum.Medium
Status
= IncidentStatusEnum.Active
}

# Create the Incident
New-SCSMClassInstance -Class $IncidentClass -Property $Property -PassThru

} -Args $incident_title, $incident_desc -Session $session

Remove-PSSession $session
The script should be pretty straightforward to interpret. The most important part is that it would require to be run on a Hybrid Worker Group with Servers that can connect via PowerShell Remote to the specified Service Manager Management Server. The Incident that will be created are using a few variables for incident title and description (these will be updated for contextual data from OMS Alerts in part 2), and some fixed data for Urgency, Impact and Status, along with my custom Source for Operations Management Suite (ref. the Enumeration Value created in the first step).

After publishing this Runbook I’m ready to run it with a Hybrid Worker.

Testing the PowerShell Runbook with a Hybrid Worker

Now I can run my Azure Automation PowerShell Runbook. I select to run it on my previously defined Hybrid Worker Group.

The Runbook is successfully completed, and the output is showing the new incident details:

I can also see the Incident created in Service Manager:

That concludes this first part of this blog post. Stay tuned for how to create an OMS Alert and trigger this Runbook in part 2!

Shut Down Azure Servers for Earth Hour – 2015 Edition

One year ago, I published a blog article for shutting down, and later restart again, Azure Servers for one hour duration during Earth Hour 2014: https://systemcenterpoint.wordpress.com/2014/03/28/earth-hour-how-to-shut-down-and-restart-your-windows-azure-services-with-automation/.

In that article, I used three different Automation technologies to accomplish that:

  • Scheduled PowerShell script
  • System Center 2012 R2 Orchestrator
  • Service Management Automation in Windows Azure Pack

Today is Earth Hour 2015 (www.earthhour.org). While the Automation technologies referred still can be used for shutting down and restarting Azure Servers, I thought I should create an updated blog article using Azure Automation that has been launched during the last year.

This new example are built on the following:

  1. An Azure SQL Database with a table for specifying which Cloud Services and VM Names that should be shut down during Earth Hour
  2. An Azure Automation Runbook which connects to the Azure SQL Database, reads the Servers specified and shuts them down one by one (or later starts them up one by one).
  3. Two Schedules, one that triggers when the Earth Hour starts and one that triggers when Earth Hour begins, and calls the Runbook.

Creating a Azure SQL Database or a SQL Server is outside the scope of this article, but the table I have created is defined like this:

CREATE TABLE dbo.EarthHourServices
(
    ID int NOT NULL,
    CloudService varchar(50) NULL,
    VMName varchar(50) NULL,
    StayProvisioned bit NULL,
CONSTRAINT PK_ID PRIMARY KEY (ID)
)
GO

The StayProvisioned is a boolean data value where I can specify if VM’s should only be stopped, or stopped and deallocated.

This table is then filled with values for the servers I want to stop.

The Azure Automation Runbook I want to create have some requirements:

  1. I need to create a PowerShell Credential Asset for the SQL Server username and password
  2. I need to be able to Connect to my Azure Subscription. Previously I have been using the Connect-Azure solution (https://gallery.technet.microsoft.com/scriptcenter/Connect-to-an-Azure-f27a81bb) for connecting to my specified Azure Subscription. This is still working and I’m using this method in this blog post, but now depreciated and you should use this guide instead: http://azure.microsoft.com/blog/2014/08/27/azure-automation-authenticating-to-azure-using-azure-active-directory/.

This is the Runbook I have created:

workflow EarthHour_StartStopAzureServices
{
    param
    (
        # Fully-qualified name of the Azure DB server 
        [parameter(Mandatory=$true)] 
        [string] $SqlServerName,
        # Credentials for $SqlServerName stored as an Azure Automation credential asset
        [parameter(Mandatory=$true)] 
        [PSCredential] $SqlCredential,
        # Action, either Start or Stop for the specified Azure Services 
        [parameter(Mandatory=$true)] 
        [string] $Action
    )

    # Specify Azure Subscription Name
    $subName = 'My Azure Subscription'
    # Connect to Azure Subscription
    Connect-Azure `
        -AzureConnectionName $subName
    Select-AzureSubscription `
        -SubscriptionName $subName 

    inlinescript
    {

        # Setup credentials   
        $ServerName = $Using:SqlServerName
        $UserId = $Using:SqlCredential.UserName
        $Password = ($Using:SqlCredential).GetNetworkCredential().Password
        
        # Create connection to DB
        $Database = "SkillAutomationRepository"
        $DatabaseConnection = New-Object System.Data.SqlClient.SqlConnection
        $DatabaseConnection.ConnectionString = "Server = $ServerName; Database = $Database; User ID = $UserId; Password = $Password;"
        $DatabaseConnection.Open();

        # Get Table
        $DatabaseCommand = New-Object System.Data.SqlClient.SqlCommand
        $DatabaseCommand.Connection = $DatabaseConnection
        $DatabaseCommand.CommandText = "SELECT ID, CloudService, VMName, StayProvisioned FROM EarthHourServices"
        $DbResult = $DatabaseCommand.ExecuteReader()

        # Check if records are returned from SQL database table and loop through result set
        If ($DbResult.HasRows)
        {
            While($DbResult.Read())
            {
                # Get values from table
                $CloudService = $DbResult[1]
                $VMname = $DbResult[2]
                [bool]$StayProvisioned = $DbResult[3] 
 
                 # Check if we are starting or stopping the specified services
                If ($Using:Action -eq "Stop") {

                    Write-Output "Stopping: CloudService: $CloudService, VM Name: $VMname, Stay Provisioned: $StayProvisioned"
                
                    $vm = Get-AzureVM -ServiceName $CloudService -Name $VMname
                    
                    If ($vm.InstanceStatus -eq 'ReadyRole') {
                        If ($StayProvisioned -eq $true) {
                            Stop-AzureVM -ServiceName $vm.ServiceName -Name $vm.Name -StayProvisioned
                        }
                        Else {
                            Stop-AzureVM -ServiceName $vm.ServiceName -Name $vm.Name -Force
                        }
                    }
                                       
                }
                ElseIf ($Using:Action -eq "Start") {

                    Write-Output "Starting: CloudService: $CloudService, VM Name: $VMname, Stay Provisioned: $StayProvisioned"

                    $vm = Get-AzureVM -ServiceName $CloudService -Name $VMname
                    
                    If ($vm.InstanceStatus -eq 'StoppedDeallocated' -Or $vm.InstanceStatus -eq 'StoppedVM') {
                        Start-AzureVM -ServiceName $vm.ServiceName -Name $vm.Name    
                    }
                     
                }
 
            }
        }

        # Close connection to DB
        $DatabaseConnection.Close() 
    }    

}

And this is my schedules which will run the Runbook when Earth Hour Begins and Ends. The Scedules specify the parameters I need to connect to Azure SQL and the Action for either Stop VM’s or Start VM’s.

Good luck with automating your Azure Servers and remember to turn off the lights as well J!

Copy SMA Runbooks from one Server to another

Recently I decided to scrap my old Windows Azure Pack environment and create a new environment for Windows Azure Pack partly based in Microsoft Azure. As a part of this reconfiguration I have set up a new SMA server, and wanted to copy my existing SMA runbooks from the old Server to the new Server.

This little script did the trick for me, hope it can be useful for others as well.


# Specify old and new SMA servers
$OldSMAServer = "myOldSMAServer"
$NewSMAServer = "myNewSMAServer"

# Define export directory
$exportdir = 'C:\_Source\SMARunbookExport\'

# Get which SMA runbooks I want to export, filtered by my choice of tags
$sourcerunbooks = Get-SmaRunbook -WebServiceEndpoint https://$OldSMAServer | Where { $_.Tags -iin ('Azure','Email','Azure,EarthHour','EarthHour,Azure')}

# Loop through and export definition to file, on for each runbook
foreach ($rb in $sourcerunbooks) {
    $exportrunbook = Get-SmaRunbookDefinition -Type Draft -WebServiceEndpoint https://$OldSMAServer -name $rb.RunbookName
    $exporttofile = $exportdir + $rb.RunbookName + '.txt'
    $exportrunbook.Content | Out-File $exporttofile
}

# Then loop through and import to new SMA server, keeping my tags
foreach ($rb in $sourcerunbooks) {
    $importfromfile = $exportdir + $rb.RunbookName + '.txt'
    Import-SmaRunbook -Path $importfromfile -WebServiceEndpoint https://$NewSMAServer -Tags $rb.Tags
}

# Check my new SMA server for existence of the imported SMA runbooks
Get-SmaRunbook -WebServiceEndpoint https://$NewSMAServer |  FT RunbookName, Tags



Hidden Network Adapters in Azure VM and unable to access network resources

I have some Azure VM’s that I regulary Stop (deallocate) and Start using Azure Automation. The idea is to cut costs while at night or weekends, as these VM’s are not used then anyway. I recently had a problem with one of these Virtual Machines, I was unable to browse or connect to network resources, could not connect to the domain to get Group Policy updates and more. When looking into it, I found out that I had a lot of hidden Network Adapters in Device Manager. The cause of this is that every time a VM is shut down and deallocated, on next start it will provision a new network adapter. The old network adapter is kept hidden. The result of this over time as I automate shut down and start every day, is that I get a lot of these, as shown below: I found in some forums that the cause of the network browse problem I had with the server could be related to this for Azure VM’s. I don’t know the actual limit, or if it’s a fixed value, but the solution would be to uninstall these hidden network adapters. Although it is easy to right click and uninstall each network adapter, I wanted to create a PowerShell Script to be more efficient. There are no native PowerShell cmdlets or Commands that could help me with this, so after some research I ended with a combination of these two solutions:

I then ended up with the following PowerShell script. The script first get all hidden devices of type Microsoft Hyper-V Network Adapter and their InstanceId. Then for each device uninstall/remove with DevCon.exe. The Script:

Set-Location C:\_Source\DeviceManagement

Import-Module .\Release\DeviceManagement.psd1 -Verbose

# List Hidden Devices

Get-Device -ControlOptions DIGCF_ALLCLASSES | Sort-Object -Property Name | Where-Object {($_.IsPresent -eq $false) -and ($_.Name -like “Microsoft Hyper-V Network Adapter*”) } | ft Name, DriverVersion, DriverProvider, IsPresent, HasProblem, InstanceId -AutoSize

# Get Hidden Hyper-V Net Devices

$hiddenHypVNics = Get-Device -ControlOptions DIGCF_ALLCLASSES | Sort-Object -Property Name | Where-Object {($_.IsPresent -eq $false) -and ($_.Name -like “Microsoft Hyper-V Network Adapter*”) }

# Loop and remove with DevCon.exe

ForEach ($hiddenNic In $hiddenHypVNics) {

$deviceid = “@” + $hiddenNic.InstanceId

.\devcon.exe -r remove $deviceid

}

And after a while all hidden network adapter devices was uninstalled: In the end I booted the VM and after that everything was working on the network again!